Artin groups of types F4 and H4 are not commensurable with that of type D4
نویسندگان
چکیده
In a recent article, Cumplido and Paris studied the question of commensurability between Artin groups spherical type. Their analysis left six cases undecided, for following pairs groups: $(F_4,D_4)$, $(H_4,D_4)$, $(F_4,H_4)$, $(E_6,D_6)$, $(E_7,D_7)$, $(E_8,D_8)$. this note we resolve first two these cases, namely, show that types $F_4$ $H_4$ are not commensurable with type $D_4$. As key step, realize abstract commensurator group $D_4$ as extended mapping class torus three punctures. We also find automorphism obtain description torsion elements, their orders conjugacy classes in all irreducible modulo centers.
منابع مشابه
the investigation of the relationship between type a and type b personalities and quality of translation
چکیده ندارد.
Three-generator Artin Groups of Large Type Are Biautomatic
In this article we construct a piecewise Euclidean, non-positively curved 2-complex for the 3-generator Artin groups of large type. As a consequence we show that these groups are biautomatic. A slight modification of the proof shows that many other Artin groups are also biautomatic. The general question (whether all Artin groups are biautomatic) remains open.
متن کاملArtin groups of euclidean type
Coxeter groups were introduced by Jacques Tits in the 1960s as a natural generalization of the groups generated by reflections which act geometrically (which means properly discontinuously cocompactly by isometries) on spheres and euclidean spaces. And ever since their introduction their basic structure has been reasonably well understood [BB05, Bou02, Dav08]. More precisely, every Coxeter grou...
متن کاملexistence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Topology and its Applications
سال: 2021
ISSN: ['1879-3207', '0166-8641']
DOI: https://doi.org/10.1016/j.topol.2021.107770